52 research outputs found

    Enforcement in Abstract Argumentation via Boolean Optimization

    Get PDF
    Computational aspects of argumentation are a central research topic of modern artificial intelligence. A core formal model for argumentation, where the inner structure of arguments is abstracted away, was provided by Dung in the form of abstract argumentation frameworks (AFs). AFs are syntactically directed graphs with the nodes representing arguments and edges representing attacks between them. Given the AF, sets of jointly acceptable arguments or extensions are defined via different semantics. The computational complexity and algorithmic solutions to so-called static problems, such as the enumeration of extensions, is a well-studied topic. Since argumentation is a dynamic process, understanding the dynamic aspects of AFs is also important. However, computational aspects of dynamic problems have not been studied thoroughly. This work concentrates on different forms of enforcement, which is a core dynamic problem in the area of abstract argumentation. In this case, given an AF, one wants to modify it by adding and removing attacks in a way that a given set of arguments becomes an extension (extension enforcement) or that given arguments are credulously or skeptically accepted (status enforcement). In this thesis, the enforcement problem is viewed as a constrained optimization task where the change to the attack structure is minimized. The computational complexity of the extension and status enforcement problems is analyzed, showing that they are in the general case NP-hard optimization problems. Motivated by this, algorithms are presented based on the Boolean optimization paradigm of maximum satisfiability (MaxSAT) for the NP-complete variants, and counterexample-guided abstraction refinement (CEGAR) procedures, where an interplay between MaxSAT and Boolean satisfiability (SAT) solvers is utilized, for problems beyond NP. The algorithms are implemented in the open source software system Pakota, which is empirically evaluated on randomly generated enforcement instances

    Enabling Incrementality in the Implicit Hitting Set Approach to MaxSAT Under Changing Weights

    Get PDF
    Recent advances in solvers for the Boolean satisfiability (SAT) based optimization paradigm of maximum satisfiability (MaxSAT) have turned MaxSAT into a viable approach to finding provably optimal solutions for various types of hard optimization problems. In various types of real-world problem settings, a sequence of related optimization problems need to solved. This calls for studying ways of enabling incremental computations in MaxSAT, with the hope of speeding up the overall computation times. However, current state-of-the-art MaxSAT solvers offer no or limited forms of incrementality. In this work, we study ways of enabling incremental computations in the context of the implicit hitting set (IHS) approach to MaxSAT solving, as both one of the key MaxSAT solving approaches today and a relatively well-suited candidate for extending to incremental computations. In particular, motivated by several recent applications of MaxSAT in the context of interpretability in machine learning calling for this type of incrementality, we focus on enabling incrementality in IHS under changes to the objective function coefficients (i.e., to the weights of soft clauses). To this end, we explain to what extent different search techniques applied in IHS-based MaxSAT solving can and cannot be adapted to this incremental setting. As practical result, we develop an incremental version of an IHS MaxSAT solver, and show it provides significant runtime improvements in recent application settings which can benefit from incrementality but in which MaxSAT solvers have so-far been applied only non-incrementally, i.e., by calling a MaxSAT solver from scratch after each change to the problem instance at hand

    μ-toksia: An Efficient Abstract Argumentation Reasoner

    Get PDF
    Peer reviewe

    Smallest Explanations and Diagnoses of Rejection in Abstract Argumentation

    Get PDF
    Peer reviewe

    Controllability of Control Argumentation Frameworks

    Get PDF
    Peer reviewe

    Incremental Maximum Satisfiability

    Get PDF
    Peer reviewe
    corecore